Kanako's Programming
正5角形を描くプログラム(perlのソース)
#!/usr/bin/perl
use Tk;
use strict;
use Math::Trig;
use Image::Magick;
&main_nonagon;
sub main_nonagon {
##座標が格納してあるディレクトリ名;
my $dir = "/home/username/perl/";
##座標データ;
open(POINTDATA, "$dir/pentagondata.txt");
my $x0;
my $y0;
my %nonagon;
while(my $points = <POINTDATA>) {
chomp($points);
my @new_points = ();
@new_points = &data_split($points);
my @trcal = ();
@trcal = &trig_calc(@new_points);
my $point_x = eval $trcal[1];
my $x = int($point_x + 0.5);
my $point_y = eval $trcal[2];
my $y = int($point_y + 0.5);
$nonagon{$trcal[0]} = [$x,$y];
}
close(POINTDATA);
my %daub;
##折り紙の裏側の領域のデータ;
open(POINTDATADAUB, "$dir/pentagondata-daub.txt");
while(my $daub = <POINTDATADAUB>) {
chomp($daub);
my @p_daub = ();
@p_daub = split(/,/,$daub);
if ($p_daub[1] !~ /[N]/) {
my $firstd = $p_daub[0];
shift(@p_daub);
$daub{$firstd} = join(",",@p_daub);
}
}
close(POINTDATADAUB);
my %broken;
##破線データ;
open(POINTDATABROKEN, "$dir/pentagondata-broken.txt");
while(my $broken = <POINTDATABROKEN>) {
chomp($broken);
my @p_broken = ();
@p_broken = split(/,/,$broken);
if ($p_broken[1] !~ /[N]/) {
my $firstb = $p_broken[0];
shift(@p_broken);
$broken{$firstb} = join(",",@p_broken);
}
}
close(POINTDATABROKEN);
my %sold;
##実線データ;
open(POINTDATASOLD, "$dir/pentagondata-sold.txt");
while(my $sold = <POINTDATASOLD>) {
chomp($sold);
my @p_sold = ();
@p_sold = split(/,/,$sold);
if ($p_sold[1] !~ /[N]/) {
my $firsts = $p_sold[0];
shift(@p_sold);
$sold{$firsts} = join(",",@p_sold);
}
}
close(POINTDATASOLD);
my $top =MainWindow->new();
my $canvas = $top->Canvas(width=>500,height=>500,-background=>'white');
$canvas->pack();
&nonagon_plot($top,$canvas,scalar(keys(%sold)),\%nonagon,\%sold,\%broken,\%daub);
}
sub nonagon_plot {
my($top,$canvas,$maxnum,$nonagon,$sold,$broken,$daub) = @_;
my $callback;
my $number = -1;
$callback = sub {
$canvas->delete('all');
&nonagon_canvas(++$number,$canvas,$nonagon,$sold,$broken,$daub);
if ($number< $maxnum) {
$top->after(200,$callback);
}else {
$canvas->Button(-command=>&exit);
}
};
$callback->();
MainLoop();
}
sub nonagon_canvas {
my($number,$canvas,$nonagon,$sold,$broken,$daub) = @_;
if (exists($daub->{$number})) {
my $ndaub = $daub->{$number};
my @ndaub = ();
@ndaub = split(/,/,$daub->{$number});
my @ndaubxy = ();
for(my $j=0; $j<@ndaub; ++$j) {
push(@ndaubxy,$nonagon->{$ndaub[$j]}->[0],$nonagon->{$ndaub[$j]}[1]);
}
$canvas->create('polygon',@ndaubxy,-fill=>'yellow');
}
if (exists($broken->{$number})) {
my $nbroken = $broken->{$number};
my @nbroken = ();
@nbroken = split(/,/,$broken->{$number});
my @nbrokenxy = ();
for(my $j=0; $j<@nbroken-1; $j=$j+2) {
$canvas->create('line',$nonagon->{$nbroken[$j]}->[0],$nonagon->{$nbroken[$j]}->[1],$nonagon->{$nbroken[$j+1]}->[0],$nonagon->{$nbroken[$j+1]}->[1],-width=>3.0, -dash=>'-..', -fill=>'red');
}
}
if (exists($sold->{$number})) {
my $nsold = $sold->{$number};
my @nsold = ();
@nsold = split(/,/,$sold->{$number});
my @nsoldxy = ();
for(my $j=0; $j<@nsold-1; $j=$j+2) {
$canvas->create('line',$nonagon->{$nsold[$j]}->[0],$nonagon->{$nsold[$j]}->[1],$nonagon->{$nsold[$j+1]}->[0],$nonagon->{$nsold[$j+1]}->[1],-fill=>'black',-width=>3.0);
}
}
}
##Math.Sqrt->sqrt;
sub data_split {
my($line) = @_;
my @line = ();
@line = split(/\,/,$line);
for (my $i=1; $i<3; ++$i) {
if ($line[$i] =~ m<Math\.Sqrt\((\d+)\)>) {
my $sq = eval sqrt($1);
$line[$i] =~ s/Math\.Sqrt\(\d+\)/$sq/g;
}
}
@line;
}
sub trig_calc {
my(@line) = @_;
my $pai = 3.14159;
for (my $i=1; $i<3; ++$i) {
if ($line[$i] =~ /(sin|cos|tan)\((\d+)\)/) {
my $angle = $2*$pai/180;
my $sct;
if ($1 eq "sin") {
$sct = sin($angle);
}elsif($1 eq "cos") {
$sct = cos($angle);
}else {
$sct = tan($angle);
}
$line[$i] =~ s/(sin|cos|tan)\(\d+\)/\($sct\)/g;
}
}
@line;
}
1;
BACK(Kanako Suto's Pageへ)
このページへの質問・コメントを歓迎致します。